

network of the future: some challenges ahead

Siavash M. Alamouti Vodafone Group R&D April 2012

Acknowledgements

This presentation is a radio and access-centric view of the challenges for the future networks. Very important issues with packet core and service layer evolution are not discussed.

• Acknowledgements:

- Trevor Gill Distinguished Engineer, Vodafone Group R&D
- Ralf Irmer Senior Manager, Wireless Access, Vodafone Group R&D
- David Fittall Senior Manager, Fixed Access and Backhaul, Vodafone Group R&D
- Sergei Tzianos Transport & Backhaul Innovation Researcher, Vodafone Group R&D
- Steve Allen, Vodafone Technology Network Access
- Andrew Hudson Vodafone Group Public Policy

our vision: connect everyone and everything

- provide seamless connectivity to all devices
- hide complexity from end-user
- broker services & create simple charging models

status quo: update on traffic

- Moore's law for mobile data holding up (roughly doubling every two years)
- data roughly 5 times of voice traffic and 1/5th of revenue
- mobile video traffic more than half of total data traffic
- 4G users create an order of magnitude more usage on the network (Cisco study claims x28)

ways to increase mobile cellular capacity

system spectrum efficiency : potential

- information theory suggests that vast improvements can be made by eliminating all inter-cell interference
- many practical constraints limit gains (mainly on system-wide channel estimation)
- results so far achieved are modest particularly on downlink (30%)
- we are far from theoretical limit (bounded only by Shannon capacity)
- theoretical limit for a fully cooperative network:

 $C_{cell} \sim \log(1 + N \text{SNR})$

where *N* is the number of users

system spectrum

unlicensed spectrum: Europe & USA

the multi-band radio dilemma

- today 5 band / 2 standard devices are common
 - typically GSM / 3G, 850, 900, 1800, 1900, 2100 MHz
- many new bands considered:
 - 33 different bands identified in 3GPP LTE specifications!
 - realistically ~15 for an "almost global" terminal
- plus GPS, WiFi, Bluetooth, FM radio, DAB,....?
- MIMO adds at least a doubling of receive chain and antenna
- cross-band spectrum aggregation could need more transceivers
- WRC-15 agenda items will be looking for more!
- "SDR" is delivering on multi-standard support, but RF is a big challenge

how do we support all these bands?

more

spectrum

device RF performance dilemma

there is 5 dB variation between best & worst devices (twice the sites)

2 antennas in all terminals improve capacity by 40% and cell edge by 75%

LTE devices need more bands and must maintain performance (challenging)

RF performance restricts spectrum exploitation

FCC halts LightSquared rollout pending "targeted" GPS interference tests Air Transport Intelligence news 13th September 2011

Nascent broadband provider LightSquared's plans to roll out a satellite-terrestrial network adjacent to the GPS band next year have been halted by the US Federal Communications Commission (FCC).

The problem: coexistence with

neighbours

will White Space solve spectrum shortage?

 "White Space" technology in UHF TV band is suggested as a solution to spectrum shortage

BUT

- beware: "Tragedy of the Commons"
- FCC rules in US require TX adjacent channel suppression of 72.8dB – much tighter than today's mobile phones
- TV receivers need to be improved too!
- there are big challenges of RF design in consumer devices

Ofcom plans "white space" networks by 2013

1 September 2011

UK Regulator Ofcom has published plans to use licence-free wireless frequencies to promote a wide range of new services and potentially push broadband further into rural areas.

the research challenge - we need radios that:

can tune anywhere

have efficient antennas

reject adjacent interference

and are small and cheap!

have clean transmitters

· · · · ·	

have sensitive receivers

areas for research in RF circuits

- some areas to consider:
 - low loss **switching** with high isolation
 - continued incremental improvement in filter performance at low cost
 - broadband PAs shared between adjacent bands
 - broadband antennas with adaptive tuning/ matching
 - technologies for tunable RF filtering
 - digital correction of analogue imperfections

continued major investment in RF R&D is needed to enable rapid growth of mobile internet (disruption badly needed)

more

spectrum

handling the data tsunami

smaller cells

backhaul: major challenge for small cells

smaller cells

small cell backhaul will require a mix of fibre & wireless

future residential traffic demands require fibre

residential fibre demand

long term bandwidth requirements of around **100-300 Mbps** downlink and **30-100 Mbps** uplink **per household** driven by concurrency of services, cloud services, and video

higher level symmetry driven by new realtime video applications telepresence, teleworking, remote monitoring/care, etc.

- Today in Europe cable (fibre/coax) represents the majority of new next generation roll-outs
- why? fibre to the home is very expensive for one entity to deploy and ecosystem is broken
 - o not attractive to access seekers bitstream access not sustainable
 - o does not fit with co-investment model
 - o uncertain return on investment for a single operator (even incumbents)

why wavelength unbundling?

- stimulate investment and innovation
 - access seekers can access wavelengths on fibre
 - replication of Local Loop Unbundling (LLU) economics
 - avoid uneconomical fibre to the Home (FTTH) infrastructure replication
 - stimulates competition and innovation (not constrained as in bit stream model)
 - enables sharing of fibre access for small cell backhaul

smaller cells

conclusion

- global fragmentation and lack of sufficient spectrum can potentially slow down mobile internet with huge impact on the economy
- mobile traffic growth will be accommodated through exploiting more spectrum (licensed and unlicensed), smaller cells, and multiple radio technologies (hierarchical & heterogeneous)
- need continued R&D in techniques for multisite signal processing
- multiband radios with good RF performance are crucial today and even more important and challenging moving forward
- WDM technology is key to allow wavelength unbundling. make FTTH a reality, and also accelerate small cell roll out.

