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Beyond 4G

Mobile Broadband




Future Cell Phones

Burden for this performance is on the backbone network

San Francisco
\ =N
=)

LTE backbone is the Internet
“«
\ 4 .
Nt-Gen ET N*H-Gen Pars
Ce]lularl " one Cellular

System @;\

P

Much better performance and reliability than today
- Gbps rates, low latency, 99% coverage indoors and out




Careful what you wish for...

WIRELESS DATA GROWTH LEADS TO SPECTRUM DEFICIT A
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Source: FCC Source: Unstrung Pyramid Research 2010

Growth in mobile data, massive spectrum deficit and stagnant revenues
require technical and political breakthroughs for ongoing success of cellular




Can we increase cellular system capacity to
compensate for a 300MHz spectrum deficit?

Without increasing cost?

or power consumption?

What would Shannon say?
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Are we at the Shannon
limit of the Physical Layer?

We don’t know the Shannon
capacity of most wireless channels

e Time-varying channels with memory/feedback.

e Channels with interference or relays.

e Uplink and downlink channels with
frequency reuse, i.e. cellular systems.

e Channels with delay/energy/SSS constraints.



'Rethinking “Cells” inFCeIIuIar

e

How should cellular
0 i systems be designed?

Will gains in practice be
big or incremental; in
capacity or coverage?

® Traditional cellular design “interference-limited”

MIMO/multiuser detection can remove interference

Cooperating BSs form a MIMO array: what is a cell?

Relays change cell shape and boundaries

Distributed antennas move BS towards cell boundary

Small cells create a cell within a cell

Mobile cooperation via relaying, virtual MIMO, analog network coding.
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Are small cells the solution to
increase cellular system capacity?

Yes, with reuse one and adaptive
techniques (Alouini/Goldsmith 1999)
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* S/l increases with reuse distance (increases link capacity).
* Tradeoff between reuse distance and link spectral efficiency (bps/Hz).

* Area Spectral Efficiency: A,=2R./(.25D?r) bps/Hz/Km?2.



" The thure Cellular Netwo”'rk‘: Hie‘farchical

| Today’s architecture

- > * 3M Macrocells serving 5 billion users
L/ * Anticipated 10x Lower COST/Mbps

(more
with WiFi

. Offload) .

10x CAPACITY Near 100%
Improvement COVERAGE

Macrocell Picocell Femtocell
Macrocell Picocell Femtocell
Radius = 2,000m Radius = 200m Radius = 10m
Transmit Power = 40W  Transmit Power = 2W Transmit Power = 0.1W

Future systems require Self-Organization (SON) and WiFi Offload



Macro BS Only
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raditional Macro vs. SON Enabled H-RAN

Chicago Downtown  H-RAN: Macro + Pico BS

Modeling Assumptions:

|

1. Chicago Downtown model
(Calculation area: 64.5
km?)

2. 38 Macro BS sites (3

sectors)

3. 340 Pico BS (3 sectors)
4. ~66000 users were

simulated with Monte
Carlo method

H-RAN advantage
> 10x CAPACITY

> 10x lower $/Mbps
> ~100%

COVERAGE

Macro BS | Macro + Pico optimized
Users trying to connect 66680 66680
Connected users 31023 50902
Effective MAC Aggregate
Throughput (DL) QOZO Mbps 12 060 Mbps
Effective MAC Aggregate
Throughput (UL) (389 Mbps 4 204 Mbps
Macro BS - Cost Per Mbps $1,341/Mbps
Pico BS - Cost Per Mbps (no backhaul/site acq) $111/Mbps
CapEx Reduction Factor 12x




Deploying One Macrocell

New site verification

hy SoN? Deployment Challe

Effort
(MD - Man
Day)

nges

ety Jﬁ -

5M Pico base stations in 2015%:

e 37.5M Man Days = 103k Man Years
sExorbitant costs

*\Where to find so many engineers?

On site visit: site details verification 0.5

On site visit: RF survey 0.5
New site RF plan 2

Neighbors, frequency, 0.5
preamble/scrambling code plan

Interference analyses on surrounding 0.5
sites

Capacity analyses 0.5

Handover analyses 0.5
Implementation on new node(s) 0.5
Field measurements and verification 2
Optimization 2
Total activities 7.5 man days

Why SoN?
« Automated configuration
 Interference Management
* Throughput/Coverage
Optimization
* Mobility Management
e Cellular Offload

1Source: ABI Research




"Self-Healing Capabilities of SON

Macrocell BS Failure Picocell/Femtocell BS Failure

* SON algorithm detects failures in macro/pico/femto BSs

* Dynamically adjusts TX power and antenna tilt of to
cover “orphaned” mobiles

e Similar algorithm used to shut down BSs to save energy



SON Premise and Architecture

Mobile Gateway
Node
Installation
Y

Or Cloud
Initial

SoN
Server
Measuremen
ts

Self Self

>

Configuration Optimization

Macrocell BS
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~ Algorithmic Challenge: Complexity

* Optimal channel allocation was NP hard In
2"d-generation (voice) I1S-54 systems

* Now we have MIMO, multiple frequency
bands, hierarchical networks, ...

* But convex optimization has advanced a lot
In the last 20 years

Innovation needed to tame the complexity




Cognitive Radios
VO (Y

Y Cellular = Y -
Cellular CR CellularTx Cellular Rx

MIMO Cognitive Underlay Cognitive Overlay

* Cognitive radios support new wireless users in existing
crowded spectrum without degrading licensed users

e Utilize advanced communication and DSP techniques
e Coupled with novel spectrum allocation policies

® Technology could
e Revolutionize the way spectrum is allocated worldwide
e Provide more bandwidth for new applications/services
* Multiple paradigms

e Underlay (exploiting unused spatial dimensions) and Overlay
(exploiting relaying and interference cancellation) promising



Cellular Systems with Cogniti\/e Relays

Cognitive Relay 1 I

=

data

Cognitive Relay 2

* Enhance robustness and capacity via cognitive relays
e Cognitive relays overhear the source messages

e Cognitive relays then cooperate with the transmitter in the
transmission of the source messages

e Can relay the message even if transmitter fails due to congestion, etc.



- Green” Cellular Networks

Pico/Femto

How should cellular
systems be redesigned
for minimum energy?

Research indicates that
significant savings is possible

* Minimize energy at both the mobile and base station via
e New Infrastuctures: cell size, BS placement, DAS, Picos, relays

* New Protocols: Cell Zooming, Coop MIMO, RRM, Scheduling,
Sleeping, Relaying

e Low-Power (Green) Radios: Radio Architectures, Modulation,
coding, MIMO



“Antenna Placement in DAS

® Optimize distributed BS antenna location
® Primal/dual optimization framework
® Convex; standard solutions apply

® For 4+ ports, one moves to the center
e Up to 23 dB power gain in downlink

Power Gain | dB )

e Gain higher when CSIT not available
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Device Challenges

® Size and Cost
® Power and neat
®* Multiband Antennas

* Multiradio Coexistance |, s F
* Integration ey

:'Processor ff -




SoftWare-Defined (SD) Radio:

Is this the solution to the device challenges?

DSP

* Wideband antennas and A/Ds span BW of desired signals
* DSP programmed to process desired signal: no specialized HW

Today, this is not cost, size, or power efficient

Compressed sensing may be a solution for sparse signals



- Compressed SensingF

® Basic premise is that signals with some sparse structure
can be sampled below their Nyquist rate

=F il iy
Lownass i e
8 OWpass e .T!m[n] i “(

* Signal can be perfectly reconstructed from these
samples by exploiting signal sparsity

® This significantly reduces the burden on the front-end
A/D converter, as well as the DSP and storage

* Key enabler for SD, low-energy, and white-space radios?
e Only for incoming signals “sparse” in time, freq., space, etc.



- Codes for minimal total energy consumption
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Is Shannon-capacity still a good metric for system design?
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Computational nodes on-chip interconnects
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Extends early work of El Gamal et. al."84 and Thompson’80



Comm.
complexity
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Circuit
Models
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Information flow
in circuits

e Large chip-area
e More decoding time
e More power

Decentralizead
Estimation

information

% 3 'y

Network

models

theory

Encodlng/decodmg Information theory
power (Transmit power)

* Stay away from capacity! =
* Close to capacity we need
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“Summary

®* Much work to be done on future cellular system design

* We are not at the Shannon limit of the PHY, and don’t
even know what it is.

|II

* The “optimal” way to design cellular networks is wide
open for innovation.

® True breakthroughs in hardware needed

® The challenges to make future cellular systems
successful are not only technical.



